
Version No.: 2024.04

Single Platform Sheet & Tube Laser Cutting Machine

www.hsglaser.com

Company Culture

Intelligent manufacturing changes future

🕞 VALUES

Customer-focused and employee-based

VISION

Become a respectable enterprise in the global metal forming equipment field

Company Profile

19 Global Branches

100+ Countries Covered

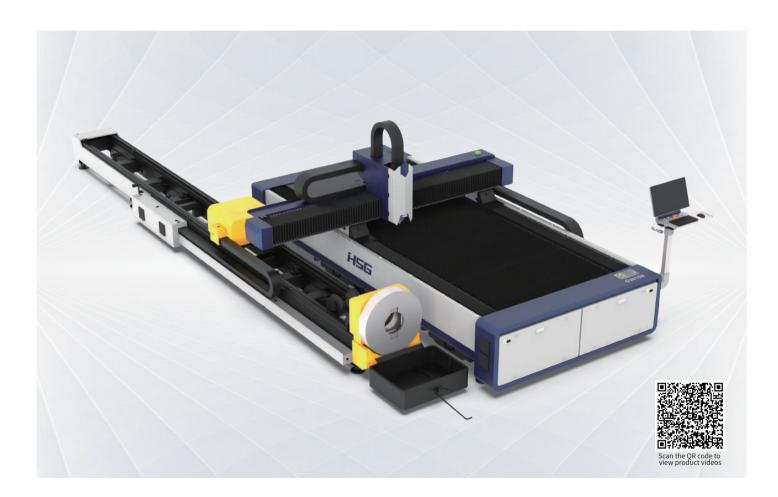
5 Manufacturing Bases

 ∇

 $\mathbf{A} \quad \mathbf{b} \quad \mathbf{A} \quad \mathbf{A}$

 \triangleright ∇ \blacktriangleright

 \land



8,000+ Annual Capability

GB 1500-6000W

Single Platform Sheet & Tube Laser Cutting Machine

Technical Parameters

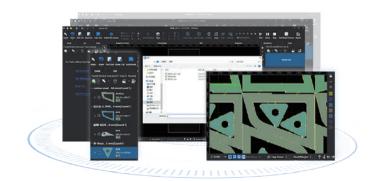
Technical Parameters	G3015B
Power	1500W-6000W
Processing format (L*W)	3000mm*1500mm
X/Y-axis positioning accuracy	±0.03mm/m
X/Y-axis repositioning accuracy	±0.03mm
Max. Linkage Speed	60m/min
Max. Linkage Acceleration	0.5G

* Machine appearance, technical parameters, function description, data comparison shown in this page are from HSG in-house laboratory. All testing results and experimental data shall be subject to real machine.

Alpha A Control System

- This system is easy to be operated and rich in functions.
- Even green hands can cut high-quality samples.
- Monitor core components in real time.
- Millisecond-level follow-up response technology.
- Click to create processing report.
- Compatible with codes of international brands.

HSG	Terretoria Ander De 1 anno Ander De 2 anno Ander And	
	Negative Statement of Statement Stat	n Ak bentilikenin P
e - Contract Cont Automatic Cont		
- [∩		
es ↓ ei ú		



Double Fully-automatic Pneumatic Chucks

- One-key clamping and automatic centering.
- Pneumatic clamping with no looseness or slip.
- Concave support frame can prevent tube from sagging and deformation.
- Clamp both round, square tube and profiles like channel and angle steel.

Professional Nesting Software

• No matter sheet cutting or tube cutting, it is equipped with professional nesting software to optimize cutting track and improve efficiency.

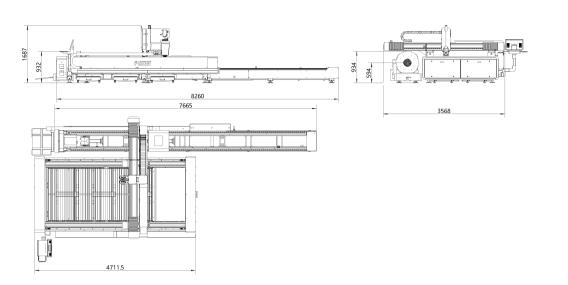
►

Automatic Focus Cutting Head

- Autofocus Laser Cutting Head The cutting head can adjust its focus according to laser beam mode to make sure of mirror-like surface.
- Servo autofocus system
- Automatic cooling and obstacle avoidance
- Three built-in protective lens
- Anti-pollution design
- Give early warning if abnormal

Tube Splicing Technology

• The operating control offers 50+ kinds of tube splicing patterns, for convenience of subsequent welding, such as splicing of male and female head of square tube, 90° arc splicing, splicing of round tube tee, splicing of cut-through holes, 45° splicing of hexagon, splicing of angle iron and channel steel, etc.



	No.		Material *				Nozzie Type •		Remark •		
ļ		500	Carbon Stad	10	Normal		0(0.05	100			
						Ntrogen	s(single)				
		3900	Aluminum		Normal	Nitrogen	S(Single)			Distance II	hile)
1			Aluminum		Normal	Nitrogen	S(Single)				
			Aluminum		Normal	Nitrogen	S(Single)				
1			Aluminum		Normal	Ntrogen	S(Single)				Real
1			Aluminum		Normal	Nimpen	s(single)			1.000	
1			Aluminan		Normal	Nkrogen	s(Single)				
1		3500	Brass		Normal	Nirogen	S(Single)				
			Drate		Normal	Nitrogen	S(Single)				Index Services
1			Drass		Normal	Nitrogen	S(Single)				
			litate		Normal	Nitrogen	S(Single)			19 X	
1			Carbon Steel		Normal	Nkrogen	S(Single)				
3			Carbon Steel		Normal	Daygen	O(Double)				
1					Normal	Doyagen	D(Double)				
3						Corygen	D(Double)			Distance in	
1			Cartion Steel			Oxygen	D(Double)				a Manfani Core a 4
					Normal	Oxygen	D(Double)				
1		3000	Carbon Street		Normal	Oxygen	D(Double)			Cicleans	
l	-	1000	Parking Stand		-	Comme	Pathonaldan	10		/	
							Martin		÷.		

Massive Production Database

- Users can invoke cutting technology from the database when cutting sheet of different materials and thickness
- Have multiple thick sheet cutting technologies like air cutting, counterboring technology, perfect finish cut (PFC), lightening-fast piercing, etc

Machine Foundation *The marked size has about 10mm error

:::• Cutting Samples

Cutting Capacity

Laser Power	5mm	15mm	25mm	35mm	45mm	55mm	65mm	75mm	85mm	95mm	105mm	115mm	125mm	
3000w				·						i				Carbon Steel Stainless Steel Aluminum Alloy Brass
6000w														

The actual machines shall prevail and above data & pictures are only for reference.

Intelligent Manufacturing Changes Future

As a global enterprise, HSG sticks to providing professional and convenient service support to customers at home and board

Professional Training

Multiple technical training services and free operation training are provided for customers and dealers in a timely manner.

Efficient Support

Humanistic service model, online services and 7*24 hotline to offer solutions and assistance.

Optimized Transport

Multi-channel transport solutions and a professional transport solution team providing various transport cases to satisfy the demand of customers and save transportation fees.

Sufficient Accessories

Highly efficient accessory delivery service; multiple network inventories jointly respond to accessory demand, shortening customers' waiting times and accelerating production.

Careful Services

Domestic door-to-door service and free proofing, with over 100+ dealers providing efficient and convenient services.

Intelligent Manufacturing Changes Future

Headquarters Add.: No. 4, Anye Road, Shunjiang Community Industrial Park, Beijiao Town, Shunde District, Foshan, Guangdong, China Website: www.hsglaser.com Email: info@hsglaser.com Tel:+86 757-66833906